12. The Adamantane Rearrangement of 1,2-Trimethylenenorbornanes

Part IV¹)

Hydride-Ion Abstraction in 1,2-exo-Trimethylenenorbornane

by Alfred Michael Klester and Camille Ganter*

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Universitätstr. 16, CH-8092 Zürich

(10.X.84)

In the AlBr₃-catalyzed adamantane rearrangement in CS₂ of 1,2-*exo*-trimethylenenorbornane (1) to 2*endo*,6-*endo*-trimethylenenorbornane (3), hydride-ion abstraction occurs at C(6) from the *exo*-side. The $k_{\rm H}/k_{\rm D}$ value for competition between 1 and 5 (D_{*exo*}-C(6)) was 1.58 ± 0.05, whereas no kinetic isotope effect was operative for competition between unlabeled 1 and 4 (D_{*endo*}-C(5)) and between 1 and 6 (D_{*endo*}-C(6)).

1,2-exo-Trimethylene-8,9,10-trinorbornane $(1)^2$) represents one of the few isomers of the 'adamantaneland'³) for which the mechanism of its carbenium-ion rearrangement has been the subject of more detailed studies. Schleyer et al. [3] were successful to establish that 2-endo,6-endo-trimethylene-8,9,10-trinorbornane $(3)^2$) is an intermediate in the adamantane rearrangement of 1.

From our recent studies, evidence was gained that a degenerate rearrangement is involved in the AlBr₃-catalyzed adamantane rearrangement in CS₂ of both 1,2-exo- $(1)^2$) and 1,2-endo-trimethylene-8,9,10-trinorbornane $(2)^2$) to 3^2) [1]. To determine which H-atom in 1 is abstracted as a hydride ion, the three selectively mono-D-labeled 1,2-exo-compounds 4⁴) (D_{endo}-C(2)), 5⁴) (D_{exo}-C(6)) and 6⁴) (D_{endo}-C(6)) were prepared, and the kinetic isotope effects in competition experiments explored. Mixtures of

¹) Part III: [1].

²) For nomenclature, see [1].

³) 'Adamantaneland': a set of 19 isomeric $C_{10}H_{16}$ -hydrocarbons [2–4].

⁴) Compounds **4-6** correspond to the general formula **B-D** ($\mathbf{R}^1 = \mathbf{D}$, $\mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{H}$) of Scheme 3 in [1].

1 and 4, 1 and 5 as well as 1 and 6 were subjected to the usual rearrangement conditions (AlBr₃ in CS₂ at -20 °C). At various degrees of conversion, the mixtures were worked up, the reactants as well as the products isolated and their D-contents determined by mass spectroscopy. The results are listed in the *Table*.

The $k_{\rm H}/k_{\rm D}$ ratios for the disappearance of reactants were then calculated applying the standard procedures⁵). Only for competition between 1 and 5 a distinct kinetic isotope effect could be observed: $k_{\rm H}/k_{\rm D} = 1.58 \pm 0.05$. This result provides conclusive evidence that in the AlBr₃-catalyzed adamantane rearrangement of 1 to 3, the hydride ion is abstracted predominantely, from the 6-*exo*-position, if not exclusively.

Synthesis of Compounds 4-6. – Hydroboration of the olefin 7 [6] with 9-borabicyclo[3.3.1]nonan (9-BBN) followed by acetylation of the crude product gave the acetate 8 (87%), which could easily be purified. Base hydrolysis (\rightarrow 84% of 9) followed by oxidation with pyridinium chlo-rochromate led to the 3-oxo compound 10 (82%) with the 1,2-endo-skeleton. A small amount (5%) had already isomerized to the correspond-

Competition experiment	Conversion [%]	D ₁ -Compounds [%]		
		Reactants	Products	Reactants + Products
27.9	46.4	45.0	46.0	
42.5	46.2	45.1	45.7	
45.3	46.2	45.2	45.7	
52.9	46.4	46.1	46.2	
1 + 5	_	46.5	-	46.5
	47.6	53.9	38.8	46.7
	51.0	54.5	37.6	45.9
	62.4	57.4	39.1	46.0
	69.3	60.0	40.5	46.5
1 + 6	-	38.3	-	38.3
	49.5	39.1	39.0	39.1
	56.3	38.8	38.1	38.4
	61.5	38.8	38.3	38.5
	65.1	39.0	37.2	37.8

Table. Competition Experiments

⁵) $k_{\rm A}/k_{\rm B} = \log ([{\rm A}]_{\rm t}/[{\rm A}]_{\rm o})/\log ([{\rm B}]_{\rm t}/[{\rm B}]_{\rm o})$ or

 $k_A/k_B = \{\log[(1 - x_t)/(1 - x_o)] + \log(1 - s)\}/\{\log(x_t/x_o) + \log(1 - s)\}, \text{ where } x_o \text{ and } x_t \text{ represent percentage of } B/100, \text{ and } s \text{ represents percentage of conversion}/100 [5].$

ing ketone 11 with the 1,2-exo-skeleton. The latter was obtained quantitatively on treatment of 10 with base. The D_{endo} -C(2) labeled compound 12 (97%) was prepared from ketone 10 with Na/CH₃OD. Finally the carbonyl function was removed on the one hand via the thioacetal 13 (88%) to yield the D_{endo} -C(2) labeled hydrocarbon 4 17%), or on the other hand directly from ketone 12 by reduction with BF₃/Et₃SiH⁶) (37%).

The synthesis of 5 started from the olefin 14 [8]. In analogy to [8], deuteroboration gave a 2:1 mixture (87%) of the two alcohols 15 and 16, which can easily be separated.

⁶) On 'ionic hydrogenation', see [7] and references cited therein.

Subsequent treatment with SOCl₂ and reduction of the resulted mixture of chlorides by *Grignard* reaction yielded the D_{exo} -C(6) labeled hydrocarbon 5.

Base-catalyzed H/D-exchange in ketone 17 [8] afforded the $(6\text{-endo}, 6\text{-exo-D}_2)$ -compound 18 (80%). Conversion to the *p*-toluenesulfonylhydrazone 19 (94%) followed by reaction with CH₃Li gave the D-C(6)-olefin 20 (35%) which was reduced to the D_{endo}-C(6) labeled hydrocarbon 6 (76%) by diimide.

Financial support by the Swiss National Science Foundation and by Ciba-Geigy AG, Basel, is gratefully acknowledged. We are indebted to the following persons of our analytical department for their help: Miss B. Brandenberg, Mr. F. Fehr and Mr. M. Langenauer (NMR), Mrs. L. Golgowsky and Prof. J. Seibl (MS).

Experimental. - General. See [1]. For nomenclature cf. Footnote 2 in [1].

1,2-endo-*Trimethylene-8,9,10-trinorbornane-3*- exo-yl acetate (8). To a soln. of 1.3 g (9.7 mmol) of 7 [6] in 30 ml of THF (distilled over LiAlH₄), 3.5 g (28.7 mmol) of 9-BBN were added and the mixture refluxed for 1.5 h. After cooling to r.t., 7 ml of 3N NaOH and 7 ml of 30% H₂O₂ were added and the mixture refluxed for 1 h. Workup with Et₂O and chromatography in Et₂O/pentane 1:1 afforded the alcohol **9**, which immediately was treated with 12.3 ml of Ac₂O/pyridine 1:1 for 2 h at 60°. Workup with Et₂O and bulb-to-bulb distillation (110°/0.2 Torr) gave 1.64 g (87%) of **8**. IR: 1732s, 1475w, 1458m, 1362w, 1291m, 1242s, 1197w, 1115m, 1038m, 1018m, 980w, 970w, 912w. ¹H-NMR (100 MHz): 1.0–2.2 (m, 14H); 1.93 (s, CH₃COO_{exo}-C(3)); 2.39 (m, $w_{V} \approx 8$, among others J(4,5exo) = 4, H–C(4)); 4.09 (d, J(2,3endo) = 5, H_{endo}-C(3)). MS: 194 (1, M^+ , C₁₂H₁₈O₂), 152 (4), 151 (6), 134 (98), 133 (28), 124 (16), 119 (40), 106 (72), 105 (30), 93 (38), 92 (62), 91 (48), 79 (38), 67 (36), 43 (100), 41 (20).

1,2-endo-*Trimethylene-8,9,10-norbornan-3*-exo-*ol* (9). A soln. of 1.197 g (6.17 mmol) of **8** in 70 ml of a potash soln. (K_2CO_3 (15 g), H_2O (150 ml), CH_3OH (750 ml)) was refluxed for 2 h. Workup with Et_2O yielded 792 mg (84%) of **9**. IR: 3610*m*, 3340 br., 1460*m*, 1322*m*, 1291*m*, 1275*m*, 1209*w*, 1190*w*, 1115*m*, 1050*s*, 1021*m*, 1003*s*, 970*w*, 952*w*, 931*w*, 915*w*, 902*w*, 890*w*. ¹H-NMR (100 MHz): 0.9–2.2 (*m*, 14H); 2.23 (*m*, $w_{1/2} \approx 8$, among others J(4,5exo) = 4, H-C(4)); 2.77 (*s*, $HO_{exo}-C(3)$); 3.25 (*d*, J(3endo,4) = 4, $H_{endo}-C(3)$). ¹³C-NMR (25 MHz): 21.04 (C(1')); 27.31, 27.46 (C(2'), C(3')); 27.21, 27.51 (C(5), C(6)); 37.20 (C(7)); 51.92 (C(4)); 55.88 (C(1)); 64.92 (C(2)); 75.30 (C(3)). MS: 152 (5, M^+ , $C_{10}H_{16}O$), 134 (55), 121 (87), 119 (55), 110 (21), 108 (26), 106 (34), 105 (26), 95 (42), 93 (74), 92 (55), 91 (47), 80 (84), 70 (63), 67 (100), 55 (32), 41 (43), 39 (24).

1,2-endo-Trimethylene-8,9,10-trinorbornan-3-one (10). A soln. of 1.5 g (6.98 mmol) of pyridinium chlorochromate in 50 ml of CH₂Cl₂ (filtered through Alox B) was treated under Ar at 0° with 295 mg (1.94 mmol) of 9 and stirred at r.t. for 2 h. Workup with Et₂O afforded a mixture of 239 mg (82%) of 10 and 12 mg (5%) of 11. An analytical sample of 10 was obtained by prep. GLC (A: 150°). IR: 1742s, 1458m, 1338m, 1282m, 1210m, 1189m, 1168m, 1122w, 1102w, 1062m, 1032w, 1005m, 970m, 950w, 928w, 910w, 885m, 695m. ¹H-NMR (300 MHz): 1.3–2.1 (m, 12H); 2.28 (dd, $J(2,3'a) \approx 11$, $J(2,3'b) \approx 8$, H–C(2)); 2.81 (d, J(4,5exo) = 5, H–C(4)). MS: 150 (35, M⁺, C₁₀H₁₄O), 132 (4), 122 (6), 121 (6), 119 (10), 107 (6), 94 (33), 93 (100), 81 (65), 80 (35), 79 (38), 67 (17), 55 (8), 53 (9), 41 (15), 39 (14).

1,2-exo-Trimethylene-8,9,10-trinorbornan-3-one (11). A soln. of 42 mg (0.28 mmol) of a ~ 10:1 mixture of 10 and 11 (see *above*) in 2 ml of CH₃OH/NaOCH₃ (15 mg of Na in 2 ml of MeOH) was stirred at r.t. for 10 min. Workup with Et₂O gave 42 mg (quant.) of 11. IR: 1740s, 1448m, 1322m, 1300w, 1270w, 1202w, 1172m, 1072m, 940m, 922w. ¹H-NMR (100 MHz): 1.2-2.1 (m, 13H); 2.44 (m, $w_{Y_2} \approx 8$, among others J(4,5exo) = 3, H-C(4)). MS: 150 (28, M^+ , C₁₀H₁₄O), 132 (4), 122 (7), 121 (6), 119 (10), 107 (8), 94 (32), 93 (100), 81 (39), 80 (25), 79 (26), 67 (11), 55 (4), 53 (7), 41 (10), 39 (10).

1,2-exo-*Trimethylene-[2*-endo-²*H₁]-8,9,10-trinorbornan-3-one* (12). A soln. of 210 mg (1.4 mmol) of a ~ 10:1 mixture of 10 and 11 (see *above*) in 6 ml of CH₃OD was treated with 50 mg of Na and stirred at r.t. for 30 min. Workup with Et₂O yielded 203 mg (97%) of 12. IR: among others 2160w. ¹H-NMR (80 MHz, CDCl₃): 1.2-2.3 (*m*, 12H); 2.65 (*m*, $w_{1/2} \approx 8$, among others *J*(4,5*exo*) = 3, H–C(4)). MS: 151 (33, *M*⁺, C₁₀H₁₃DO), 150 (10), 133 (4), 123 (6), 122 (7), 120 (8), 108 (6), 106 (10), 95 (14), 94 (35), 93 (100), 82 (33), 81 (35), 80 (35), 79 (23), 67 (10), 41 (10), 39 (9).

3,3 (Trimethylenedithio)-1,2-exo-trimethylene-[2-endo-²H₁]-8,9,10-trinorbornan-3-one (13). To a soln. of 189 mg (1.25 mmol) of 12 in 4 ml of dry CHCl₃, 0.13 ml (140 mg, 1.3 mmol) of freshly distilled 1,3-propanedithiol were added and the mixture stirred at r.t. for 1 h. After cooling to 0°, 0.7 ml of BF₃ \cdot Et₂O were added and

stirring continued for additional 16 h at 0°. Workup with Et₂O yielded 267 mg (88%) of **13**. IR: 1452*m*, 1432*m*, 1422*m*, 1415*m*, 1375*w*, 1295*w*, 1270*m*, 1235*w*, 1157*w*, 1130*w*, 945*w*, 930*w*, 904*s*, 872*w*. ¹H-NMR (80 MHz, CDCl₃): 1.1–2.4 and 2.4–3.2 (2*m*, 13H and 6H). MS: 242 (21), 241 (100, M^+ , C₁₃H₁₉DS₂), 240 (31), 194 (48), 167 (40), 166 (32), 165 (45), 145 (25), 134 (26), 119 (25), 106 (20), 93 (31), 86 (22), 84 (31), 43 (15), 41 (26).

1,2-exo-*Trimethylene-[2*-endo-²*H₁]-8,9,10-trinorbornane* (4). – a) *From* **13**. A soln. of 183 mg (0.76 mmol) of **13** in 10 ml of EtOH was treated with 3 g of *Raney*-Ni and stirred at r.t. for 16 h. Filtration through *Celite*, workup with pentane and bulb-to-bulb distillation $(100^{\circ}/20 \text{ Torr})$ led to 18 mg (17°) of **4**. ¹H-NMR (300 MHz): ~ 1.5–1.55, signal for H_{endu}-C(2) missing, ¹³C-NMR (25.2 MHz)⁷): 26.50 (C(2')); 28.72 (C(1')); 29.51 (C(5)); 33.54 (C(3')); 33.61 (C(6)); 39.17 (C(4)); 39.93⁸) (C(3)); 41.09 (C(7)); 48.00 (unlabeled C(2)⁸)); 56.34⁸) (C(1)). MS: 138 (12), 137 (87, M^+ , $C_{10}H_{15}D$, 136 (31), 122 (49), 121 (46), 109 (31), 108 (46), 107 (33), 96 (31), 95 (67), 94 (100), 93 (41), 83 (38), 82 (37), 81 (54), 80 (82), 79 (62), 68 (43), 67 (45), 55 (13), 53 (13), 41 (23), 39 (21).

b) From 12 Directly. During 5 min BF₃ gas was passed through a soln. of 300 mg (1.99 mmol) of 12 in 5 ml of abs. CH_2Cl_2 and 900 µl of Et₃SiH. The mixture was washed with H₂O, concentrated by distilling off the solvent through a Vigreux column and 4 (101 mg, 37%) isolated by prep. GLC (B: 120°).

Deuteroboration of 14. In analogy to [8] 10 ml of 0.57M BD₃/THF was added at 0° to 2.001 g (14.9 mmol) of 14 in 5 ml of THF. After stirring at r.t. for 24 h 10 ml of 3N NaOH and 10 ml of 33% H₂O₂ were added and the mixture refluxed for 1 h. Workup with Et₂O afforded 1.988 g (87%) of a 2:1 mixture of the alcohols 15 and 16. Analytical samples were obtained by prep. GLC (20% *Carbowax M 2000*, 180°).

1,2-exo-*Trimethylene-[6*-exo-²*H*₁*]*-8,9,10-trinorbornan-5-exo-ol (**15**). ¹H-NMR (300 MHz): 1.1–2.0 (*m*, 13H); 2.12 (*d*, J = 4, $w_{1/4} \approx 2$ each, H–C(4)); 3.90 (*d*, J(5endo, 6endo) = 6.8, $w_{1/4} \approx 3$ each, H_{endo}–C(5)). MS: 154 (3.1), 153 (22.7, M^+ , C₁₀H₁₅DO), 152 (1.6), 135 (65), 134 (11), 124 (14), 122 (48), 120 (25), 119 (14), 109 (17), 108 (98), 107 (100), 106 (47), 97 (17), 96 (30), 95 (15), 94 (23), 93 (34), 92 (28), 91 (22), 82 (26), 81 (26), 80 (73), 79 (62), 78 (17), 77 (17), 68 (13), 67 (14), 66 (14), 41 (28).

1,2-exo-Trimethylene-[5-exo-² H_1]-8,9,10-trinorbornan-6-exo-ol (16). ¹H-NMR (300 MHz): 1.1-2.0 (m, 13H); 2.23 (m, $w_{1/2} \approx 7$, H–C(4)); 3.62 (dd, J(5endo,6endo) = 6.7, J = 1.4 H_{endo}–C(6)). MS: 154 (7.5), 153 (56.7, M^+ , C₁₀H₁₅DO), 152 (4.6), 135 (26), 124 (13), 122 (14), 120 (12), 108 (24), 107 (100), 106 (62), 105 (12), 94 (13), 93 (20), 92 (16), 91 (19), 82 (17), 81 (19), 80 (36), 79 (55), 77 (16), 67 (35), 55 (13), 41 (26).

1,2-exo-Trimethylene-[6-exo- ${}^{2}H_{1}$]-8,9,10-trinorbornane (5). To 1200 g (7.84 mmol) of a 2:1 mixture of 15 and 16 (see *above*) 5 ml (190 mmol) of SOCl₂ were dropped at -70° . After 4 h at r.t. the mixture was poured on ice/H₂O and extracted with pentane. The org. layer was washed with H₂O. Bulb-to-bulb distillation (160°/28 Torr) yielded 915 mg (68%) of a mixture of chlorides.

To 805 mg (33.1 mmol) of Mg in 55 ml of THF (distilled over LiAlH₄), 3.1 ml (36 mmol) of 1,2-dibromoethane were added and the mixture warmed to 90° for 2 h. After cooling to r.t., addition of 6.85 g (41.3 mmol) of KI, followed by 2.7 g of K (69.5 mmol), refluxing for 2 h, again cooling to r.t., 915 mg of the above chloride mixture in 3 ml of THF were added dropwise. Stirring for 12 h at r.t. and subsequent refluxing for 15 min, cooling to 0°, hydrolyzing with sat. NH₄Cl soln., extraction with pentane, washing with H₂O and bulb-to-bulb distillation (120°/24 Torr) gave 604 mg (83%) of a 2:1 mixture of two hydrocarbons, from which **5** was isolated by prep. GLC (B: 120°)⁹). ¹H-NMR (300 MHz): ~1.55–1.6, signal for H_{exo}-C(6) missing. ¹³C-NMR (25.2 MHz)⁷): 26.50 (C(2')); 28.65 (C(1')); 29.41⁸) (C(5)); 33.25⁸ (C(6)); 33.66 (C(3')); 39.16 (C(4)); 39.93 (C(3)); 41.07 (C(7)); 47.99 (C(2)); ~ 56.4⁸) (C(1)). MS: 138 (11.9), 137 (100, M^+ , C₁₀H₁₅D), 136 (9.6), 123 (6), 122 (59), 121 (15), 109 (30), 108 (43), 107 (35), 96 (49), 95 (93), 94 (68), 93 (33), 92 (15), 83 (18), 82 (53), 81 (61), 80 (84), 79 (63), 68 (31), 67 (63), 66 (18), 55 (16), 53 (16), 41 (31).

1,2-exo-Trimethylene-[6-endo,6-exo-²H₂]-8,9,10-trinorbornan-5-one (18). A mixture of 1.397 g (9.313 mmol) of 17 [8], 10 ml of CH₃OD and 3 g (55.6 mmol) of NaOCH₃ was refluxed for 1 h and subsequently stirred at r.t. for 12 h. Et₂O (80 ml) was added and the org. layer washed twice with 2N HCl and H₂O to give 1.173 g (80%) of 18. IR: among others 2115w, 2130w, 2208w. MS: 153 (1.8), 152 (14.1, M^+ , C₁₀H₁₂D₂O), 151 (3.5), 123 (9), 107 (19), 106 (100), 83 (15), 81 (21), 80 (23), 79 (22), 41 (11).

⁷) For the ¹³C-NMR of unlabeled 1, see [6].

⁸) The following characteristic features are observed in the ¹³C-NMR spectra of D-labeled compounds [9] compared to unlabeled ones: a) D-labeled C-atoms: $t ({}^{1}J(C,D) \approx 20$ Hz), shifted by ~ 0.4 ppm to higher field, whereby the signals become very small for tertiary C-atoms; b) C-atoms α to D-labeled C-atoms: $t ({}^{2}J(C,D) < 1$ Hz), shifted by ~ 0.1 ppm to higher field; c) C-atoms β to D-labeled C-atoms: $t ({}^{3}J(C,D) < 1$ Hz), shifted by ~ 0.02 ppm to higher field.

⁹) The second hydrocarbon is a D-labeled 2-endo,6-endo-trimethylene-8,9,10-trinorbornane.

1,2-exo-Trimethylene-[6-endo,6-exo-²H₂]-8,9,10-trinorbornan-5-one p-Toluenesulfonylhydrazone (19). A mixture of 876 mg (5.76 mmol) of 18 and 1100 g (5.9 mmol) of TsNHNH₂ in 5 ml of AcOH was refluxed for 15 min. AcOH was distilled off under reduced pressure (20 Torr) and the residue chromatographed (220 g SiO₂) in Et₂O/hexane 3:1 to yield 1.738 g (94%) of 19. M. p. 145–146°. MS: 320 (2.3, M^+ , $C_{17}H_{20}D_2N_2O_2S$), 319 (5.2), 318 (1), 165 (41), 164 (89), 163 (59), 137 (17), 136 (32), 135 (22), 122 (19), 121 (34), 120 (32), 119 (18), 107 (41), 106 (43), 105 (44), 94 (20), 93 (38), 92 (72), 91 (100), 81 (34), 80 (36), 79 (55), 78 (23), 77 (26), 67 (28), 66 (15), 65 (39), 41 (45).

1,2-exo-Trimethylene-[$6^{-2}H_1$]-8,9,10-trinorborn-5-ene (20). A soln. of 1.605 g (5.02 mmol) of 19 in 150 ml of abs. Et₂O was treated at 0° with 10 ml of 1.6N CH₃Li in ether (16 mmol). After stirring at r.t. for 24 h, 1 ml of H₂O was added and stirring continued for 15 min. The mixture was dried (MgSO₄) and the solvent carefully distilled off through a Vigreux column. Bulb-to-bulb distillation (120°, 20 Torr) afforded 237 mg (35%) of 20. ¹H-NMR (300 MHz): 1.13 (dq, $J_{gem} = 7$, J = 2, $H^{C(5)}$ —C(7))¹⁰); 1.17–1.33 (m, 3H); 1.44 (dt, J = 12, J = 3.5, 1H); 1.45–1.6 (m, 1H); 1.67–2.0 (m, 5H); 2.88 (m, $w_{1/2} \approx 7$, H–C(4)); 5.98 (d, $J_{4,5} = 2.9$, H–C(5)). MS: 136 (4.2), 135 (32, M^+ , C₁₀H₁₃D), 134 (7.8), 120 (18), 106 (15), 94 (18), 93 (100), 92 (53), 91 (18), 81 (89), 80 (68), 79 (25), 78 (25), 77 (16), 67 (13), 41 (10).

1,2-exo-*Trimethylene-[6*- endo- ${}^{2}H_{1}$ *J*-8,9,10-trinorbornane (6). A soln. of 61 mg (0.45 mmol) of **20** in 600 µl of AcOH/CH₃OH 1:1 was slowly added dropwise to a stirred suspension of 300 mg (1.55 mmol) of potassium azodicarboxylate: the decolorized solution was poured into pentane and the org. layer washed 3 times with H₂O and once with sat. NaHCO₃ solution. Bulb-to-bulb distillation (120°, 20 Torr) yielded 47 mg (76%) of **6**. ¹H-NMR (300 MHz): *ca*. 1.1–1.2, signal for H_{endo}–C(6) missing. MS: 138 (12), 137 (100, M^{+} , C₁₀H₁₅D), 136 (10), 122 (59), 121 (15), 109 (30), 108 (43), 107 (35), 96 (50), 95 (93), 94 (68), 93 (33), 92 (15), 83 (18), 82 (53), 81 (61), 80 (84), 79 (63), 68 (31), 67 (63), 66 (18), 55 (16), 54 (14), 53 (16), 42 (15), 41 (31).

Rearrangements with AlBr₃ in CS_2 . – General Procedure. To 120 µl of AlBr₃ solution under Ar (prepared from 60 mg of AlBr₃ and 600 µl of CS₂), precooled to -20°, 60 µl of a solution of 80 mg of 4, 5 and 6, resp., 80 mg of 1 and 160 mg of dodecane (internal standard) in 320 µl of CS_2 (also precooled to -20°) was added under stirring. The reaction was quenched by adding 5 ml of a 3:1 mixture of Et_2O and pyridine (precooled to -100°) and worked up: 10 ml of Et_2O were added and the org. layer washed with 2N HCl. From this solution on the one hand by further dilution with Et_2O , the rate of conversion was determined by capillary GLC (3 measurements in each case). On the other hand the solvent was removed by distillation through a *Vigreux* column. Reactants and products were separated by prep. GLC to determine their D-contents by MS with correction for natural abundance of ¹³C. The results are listed in the *Table*.

REFERENCES

- [1] A. M. Klester, C. Ganter, Helv. Chim. Acta 1983, 66, 1200.
- [2] H. W. Whitlock, jr., M. Siefken, J. Am. Chem. Soc. 1968, 90, 4929.
- [3] E.M. Engler, M. Farcasiu, A. Sevin, J.M. Cense, P.v.R. Schleyer, J. Am. Chem. Soc. 1973, 95, 5769.
- [4] R.C. Fort, jr., 'Adamantane. The Chemistry of Diamond Molecules', M. Dekker, Inc., New York, 1976.
- [5] a) L. Melander, W. H. Saunders, jr., 'Reaction Rates of Isotopic Molecules', J. Wiley & Sons, Inc., New York, 1980; b) P. Krumbiegel, 'Isotopieeffekte', Akademie-Verlag GmbH, Berlin, 1970; c) J. F. Bunnett, in 'Techniques of Chemistry', Ed. A. Weissberger, J. Wiley & Sons, Inc., New York, 1974, 3rd edn., Vol.6, part 1, p. 129; d) W. H. Saunders, jr., in 'Techniques of Chemistry', Ed. A. Weissberger, J. Wiley & Sons, Inc., New York, 1974, 3rd edn., Vol.6, part 1, p. 211.
- [6] F.J. Jäggi, C. Ganter, Helv. Chim. Acta 1980, 63, 866.
- [7] W.P. Weber, in 'Reactivity and Structure Concepts in Organic Chemistry', 'Silicon Reagents for Organic Synthesis', Springer-Verlag, Berlin, 1983, Vol. 14, p. 273.
- [8] E.J. Corey, R.S. Glass, J. Am. Chem. Soc. 1967, 89, 2600.
- [9] R. Aydin, H. Günther, J. Am. Chem. Soc. 1981, 103, 1301.

¹⁰) The index indicates toward which C-atom the H-atom is orientated.